Ezeket látta már?

Hogyan gondolkodik a generatív MI? Mi történik egy chatbot „fejében”, amikor választ ad?

hogyan gondolkodik MI chatbot

Szegedi kutatók keresik a választ a chatbotok titkaira

A mesterséges intelligencia (MI) egyre több feladatban segít minket a mindennapokban, de mi történik egy chatbot „fejében”, amikor választ ad egy kérdésre vagy értelmez egy utasítást? Többek között erre keresi a választ a Szegedi Tudományegyetem Mesterséges Intelligencia Kompetencia Központjának áprilisban induló kutatása, együttműködésben az amerikai Rutgers Egyetemmel és a német Ludwig-Maximilians-Universitättel. A cél, hogy mélyebben feltárják a generatív nyelvi modellek működését a technológia biztonságosabb és hatékonyabb alkalmazása érdekében.

Belelátni a generatív MI modellek fejébe

A mesterséges intelligencia képes utánozni az emberi gondolkodást, de valóban érti is a saját döntéseit? A generatív modellek – amelyek különféle algoritmusok és gépi tanulási modellek segítségével a megadott utasítások alapján hoznak létre új tartalmakat – képesek lehetnek sakkozni, de felmerül a kérdés, hogy valóban ismerik-e a játékszabályokat, vagy csupán mintázatokat követnek anélkül, hogy értenék a játék működését.

A RAItHMA projekt keretében induló kutatás egyik fontos témája, hogy a generatív MI modellek hogyan reprezentálják az egyes fogalmakat, és ezek a fogalmak milyen kapcsolatban állnak egymással. Magyarán, ha egy chatbot igaznak ítél egy állítást, vajon automatikusan hamisnak tartja annak tagadását? Az emberi gondolkodás számára ez magától értetődő, de a nyelvi modellek esetében nem minden esetben teljesül.

A chatbotok meglepő korlátai

„A nagy nyelvi modellek nem a tényleges tudást vagy a szabályok megértését sajátítják el, hanem pusztán a szövegek folytatására épülnek. Ebből kifolyólag a chatbotok olykor olyan alapvető kérdésekben hibáznak, amelyeket adott esetben egy gyermek is képes megválaszolni. Ha például felsoroljuk a hét törpe nevét, majd megkérdezzük, hogy egy adott név szerepelt-e a listán, a modell nem mindig tudja a helyes választ. Az MI képes akár rendkívül összetett matematikai feladatokat is megoldani, ugyanakkor nehezen birkózik meg a halmaz fogalmával és néha egészen egyszerű feladványokkal is. Ha sikerül felderíteni ennek hátterét, nagyot léphetünk előre a mesterséges intelligencia jobb megértése és biztonságosabb, hatékonyabb használata felé” – mondta Dr. Jelasity Márk, az Interdiszciplináris Kutatásfejlesztési és Innovációs Kiválósági Központ Mesterséges Intelligencia Kompetenciaközpont vezetője.

A kutatók arra is keresik a választ, hogy mi áll ezeknek az ellentmondásoknak a hátterében, milyen belső tudással rendelkezik a modell, és miképpen csökkenthető a kommunikációs zavar ember és gép között. Amellett, hogy ez a munka a generatív MI megbízhatóságának javítását szolgálja, új távlatokat nyithat a modellek alkalmazásában számos területen.

Megbízhatunk a mesterséges intelligenciában?

Ahogy egyre több területen alkalmazzuk a mesterséges intelligenciát, komoly kockázatot jelent, ha nem értjük pontosan, hogyan működnek ezek a modellek. Egy önvezető autó például képes felismerni az előtte haladó járműveket és a közlekedési táblákat, de nem képes megérteni a közlekedési helyzeteket. Egy ember tudja, hogy ha egy labda begurul az útra, valószínűleg egy gyerek fog utána szaladni – a mesterséges intelligencia viszont ezt a kontextust egyelőre nem képes felismerni.

Az egyik alapvető hiányosság, hogy a modellek nem építenek ki stabil világmodellt, ami kulcsfontosságú lenne a megbízható működéshez. A Szegedi Tudományegyetem kutatói nemzetközi partnereikkel együtt arra törekednek, hogy feltárják a generatív MI korlátait és mélyebben megértsék működését.

Első lépésként ugyanis, ha pontosabb képet kapunk arról, hogyan „gondolkodnak” ezek a rendszerek és milyen hibák jellemzik őket, az hosszú távon segíthet új megközelítéseket kialakítani. Az így szerzett tudás hozzájárulhat a jövő MI-rendszereinek alakításához, a hatékonyabb, megbízhatóbb tervezéshez. A mesterséges intelligencia ugyanis nem csupán egy technológiai eszköz, hanem a tudomány egy olyan területe, amelynek mélyebb megismerése kulcsfontosságú a jövő fejlesztéseihez.

Kövesse az Egészségkalauz cikkeit a Google Hírek-ben, a Facebook-on, az Instagramon vagy a Twitter-en, Tiktok-on is!

Így segíti a mesterséges intelligencia a kutatókat

Így segíti a mesterséges intelligencia a kutatókat

Forrás: Szegedi Tudományegyetem
Google Hírek ikon
Adja hozzá a Híreket a Google hírfolyamához