Koronavírus betegkalauz - egy helyen a járvány leggyakoribb fogalmai
Tüskefehérje, mRNS-vakcina, immunmemória – gyakori fogalmak a koronavírus-járvány során, melyeknek azonban a pontos jelentését sokan nem ismerik. Összeállításunk, virológus és járványügyi szakemberek közreműködésével pótolja ezt a hiányt.
A bizonytalan jelentésű fogalmakhoz előszeretettel tapadnak megalapozatlan hiedelmek vagy légbőlkapott magyarázatok, melyek sokkal gyorsabban terjednek a bizonyított tényeknél. Összeállításunk, melyet virológus és járványügyi szakemberek közreműködésével Ádám Veronika, az MTA Orvosi Tudományok Osztálya elnöke készített, a koronavírus járvánnyal felmerülő leggyakoribb fogalmak között tesz rendet.
Friss koronavírus hírek itt - kattintson!
Genom
Egy szervezet örökítőanyagának összefoglaló neve, amely DNS, illetve egyes vírusokban RNS lehet. A szervezet számára fontos, meghatározó tulajdonságokat kódoló géneket tartalmazza. A genom legkisebb egységeinek (nukleotid) sorrendje közvetlenül határozza meg a fehérjék építőköveinek (aminosav) sorrendjét és így a fehérje szerkezetét. A DNS-ben tárolt információ először RNS-be íródik át, majd ezek információtartalmának felhasználásával jönnek létre a fehérjék.
A koronavírus egy RNS-vírus, mely nem tartalmaz DNS-t sokszorozódásának folyamatában sem. Ezért a koronavírus genomja nem képes beépülni az emberi szervezet DNS-alapú genetikai állományába. Mivel az mRNS-alapú oltóanyagok (Pfizer, Moderna) a vírus RNS-alapú genetikai állományának is csak egy kis részét (a tüskefehérjét kódoló régiót) tartalmazzák, a vakcinák sem okoznak semmilyen változást az emberi genomban.
Mutáció
Bármely jellegű (általában spontán) változás a genom szerkezetében. A mutációk lehetnek hasznosak vagy akár károsak is a szervezetre. A mutációk mindig a genomban jönnek létre, és az ott megváltozott információtartalom következtében megváltoztathatják a kódolt fehérje szerkezetét is, ami a szervezet működésének zavarához vezethet.
A koronavírus esetében a mutációk zömmel a vírusfelszíni tüskefehérjét érintik, amely elsődlegesen fontos a sejtekhez való kapcsolódásban, így a gazdaszervezet megfertőzésében. Mivel a tüskefehérje egyben a koronavírus fő antigénje is, amely kiváltja az immunválaszt, a tüskefehérjét érintő mutációk által létrehozott különböző variánsok befolyásolják az oltás hatására kialakult védettség hatásfokát.
mRNS
Hírvivő (messenger) RNS. Szerepe a sejteken belüli információk szállítása a genomtól a fehérjék létrehozásának helyszínére. Az mRNS-molekulák mindössze néhány száz vagy ezer építőegységből állnak, és funkciójuk ellátása után a szervezetben lebomlanak.
A koronavírus nem tartalmaz DNS-molekulát, csak RNS-genomot, így a vírus genetikai állománya hasonló a hírvivő RNS-éhez. A vírus által megfertőzött sejtekbe kerülve közvetlenül megindítja a fehérjék előállítását és új vírusok létrehozását.
Pontosan ez a mechanizmus az alapja az RNS-alapú vakcinák működésének is, hiszen az oltóanyagban használt RNS-molekula közvetlenül megindítja a sejtekben a tüskefehérje gyártását, amire kialakul a szervezet immunválasza és így a vírus elleni védelme.
Vírusok
A baktériumoknál mintegy 10–100-szor kisebb, önállóan szaporodásra képtelen, élőlénynek nem nevezhető ágensek. Saját anyagcseréjük nincsen, csupán önmaguk sokszorozására (replikáció) képesek a megfertőzött sejtek (gazdasejtek) fehérje- és nukleinsav-szintetizáló apparátusának felhasználásával. Felépítésük egyszerű, általában egy fehérje- vagy egy fehérje- és zsírtartalmú burok tartalmazza a másolásukhoz szükséges kódot (DNS vagy RNS), melyben sokszor olyan információ is van, amely a gazdasejt működését befolyásolja. A vírus másolásának befejeztével a keletkezett vírusok a környezetbe jutnak, míg a megfertőzött gazdasejt általában elpusztul.
A vírusfertőzés kezelésére úgynevezett antivirális szereket lehet alkalmazni, míg a vakcinák a vírusfertőzés megelőzésére szolgálnak.
Tüskefehérje
A koronavírusok jellegzetes felszíni molekulája, ami nagy számban található a COVID-19 betegséget okozó SARS-CoV-2 vírus felszínén is. A tüskefehérje nagyméretű molekula, amely a korona tüskéihez hasonló mintázatot kölcsönöz a vírus felszínének, innen kapta ez a víruscsalád a koronavírus elnevezést. Alapvető szerepe van a fertőzésben, mert ez a molekula kötődik a szervezetben a megfertőzendő sejtek (gazdasejtek) felszíni receptoraihoz, és ez teszi lehetővé a vírus bejutását a sejtekbe. A sejtek pusztulását azonban nem a tüskefehérje, hanem a teljes vírus sejten belüli működése és sokszorozódása okozza.
A COVID-19 elleni immunitásban, jelen ismereteink szerint, a tüskefehérjének jut a legfőbb szerep, mivel a vírust megkötő és a fertőzést megakadályozó, ún. neutralizáló ellenanyagok (antitestek) többsége ehhez a molekulához kötődik. Ez a tüskefehérjét kódoló mRNS-tartalmú vakcinák hatékonyságának az alapja.
Immunválasz
Az immunválasz több szinten szabályozott, hálózatokban működő, részben veleszületett (öröklött), részben szerzett (az egyedi élet alatt kialakuló) élettani folyamat, amely a szervezetet ért antigéninger hatására jön létre. A specifikus immunválasz során az adott antigénnel nagy fajlagossággal reagáló ellenanyagok (antitestek) keletkeznek, és emellett aktiválódik a specifikus, pusztító (citotoxikus) sejtekkel működő, ún. sejtközvetített immunválasz is. Általában az antitest- és a sejtközvetített immunválasz egyaránt megvalósul, azonban az arányuk eltérő lehet, függően az antigén természetétől és az immunizálódás körülményeitől. Ezek a folyamatok eredményezik a kórokozók szervezetből való eltávolítását. Bizonyos esetekben az immunrendszer tolerálja az antigént, vagyis nem indít támadást ellene.
Antigén
Minden immunválaszt kiváltó molekulát vagy sejtes elemet antigénnek nevezünk.
A koronavírus esetében a vírus tüskefehérjéje a legfőbb antigén, és a COVID-19 betegség során a spontán, vagyis a fertőzés után kialakuló immunitás jelentős része ez ellen irányul. A koronavírus elleni vakcinálásnak is az a célja, hogy a tüskefehérje ellen jöjjön létre egy hosszan tartó immunválasz.
Antitestek (ellenanyagok, immunglobulinok)
A szervezet védelmét biztosító fehérjék, melyeket vírusok vagy baktériumok hatására aktiválódó immunsejtek termelnek, és a kórokozók semlegesítésére képesek.
Az ellenanyagokat immunglobulinnak is nevezik; rövidítésük: Ig. A fertőzést követően, 7-10 nap elteltével már termelődnek (IgM-típusú), majd több nap után egy másik típusú antitest is megjelenik (IgG), ami már az immunológiai memória kialakulására utal.
A koronavírus elleni antitestek vérmintából kimutathatók. Vakcinálás vagy a vírussal való fertőződés után bármilyen mennyiségben jelen lévő IgG-típusú ellenanyag arra utal, hogy kialakult a szervezetben az immunvédelem.
Immunmemória
A specifikus immunválasz során olyan sejtek keletkeznek, amelyek „emlékeznek” egy adott antigénre (kórokozóra), s amikor ismételten megjelenik a szervezetben, az immunrendszer hatékonyabban és gyorsabban reagál rá. Az immunológiai memória időtartama az antigén mennyiségi és minőségi tulajdonságaitól, valamint a szervezet (részben öröklött) jellegzetességeitől és állapotától függ.
A koronavírus elleni vakcináció hatékonyságának időtartamáról, tehát az oltás megismétlésének optimális időpontjáról ma még nincs elég tapasztalat, az idő előrehaladtával azonban egyre többet tudunk.
Vakcináció
Immunológiai védettség létrehozása védőoltással (pl. a COVID-19 esetében a koronavírus tüskefehérjéje ellen): aktív, hosszú idejű immunmemória kialakítása az antigén vagy annak immunválaszt kiváltó részei ismételt beadásával.
A COVID-19-pandémia során eddig lényegében háromféle eljárással készült vakcinát használnak világszerte:
1. inaktivált (tehát sokszorozódásra képtelen) vírust tartalmazó oltóanyagot (pl. Sinopharm);
2. a koronavírus genetikai anyagát egy másfajta, de betegséget nem okozó vírussal (pl. adenovírus) a szervezetbe bejuttató oltóanyagot (pl. AstraZeneca, Szputnyik V, Janssen);
3. a tüskefehérjét kódoló hírvivő RNS (mRNS) biokémiailag módosított változatát lipid nanopartikulumokba csomagolva a szervezetbe bejuttató oltóanyagot (pl. Pfizer-BioNTech, Moderna).
Folyamatban van egy olyan, COVID-19 ellen hatékony vakcina bevezetése is, amely mesterségesen előállított tüskefehérjét tartalmaz (Novavax).
Vakcina
Immunválaszt és immunológiai memóriát létrehozó és ezáltal a különböző fertőző betegségek elleni védettség (immunitás) kialakítására szolgáló, biztonságos és hatékony oltóanyag. A védettséget általában a fertőzések számának csökkenésével fejezik ki, de van olyan értékelés is, amelyben a kialakuló betegség súlyosságát vagy a bekövetkező halálesetek számát (mortalitás) veszik figyelembe
Klinikai vizsgálatok
A laboratóriumban kifejlesztett és előzetesen tesztelt vakcinák széles körű alkalmazása előtt (más gyógyszerekhez hasonlóan) ún. klinikai vizsgálatok során szükséges igazolni az embereken való hatékonyságukat és biztonságosságukat. A klinikai vizsgálatok szigorúan szabályozott keretek között embereken végzett kísérletek.
A klinikai vizsgálatok három fő fázisa:
1. fázis – a biztonságosság vizsgálata kevés, általában legfeljebb 30 önkéntesen;
2. fázis – a hatékonyság vizsgálata valamivel több (kb. 100) önkéntesen;
3. fázis – nagyszámú (több ezer) önkéntesen végzett, széles körű hatékonysági vizsgálat.
A három fázis fokozatossága biztosítja az esetleges káros mellékhatások következményeinek a minimalizálását. Sikeres 3. fázis után lehetőség van a vakcina/gyógyszer engedélyezésére, amit gyakran további utánkövetéses (ún. 4. fázis) vizsgálatok követnek az esetleg fellépő nagyon ritka mellékhatások felismerése érdekében.
Fontos kiemelni, hogy a klinikai vizsgálatok kísérletnek minősülnek, tehát eredményük nem jósolható meg előre.
Vakcinafejlesztés – biztonság és hatékonyság
A vakcinafejlesztések nemzetközileg kialakított és ellenőrzött módszerekkel történnek, hasonlóan a gyógyszerfejlesztés szigorú, nemzetközileg elfogadott előírásaihoz. A klinikai stádiumok során először (1. és 2. fázis) a vakcina biztonságossága a kérdés, amit általában több száz különböző korú önkéntes alanyon próbálnak ki. Itt a cél a toxicitás (mérgező, egészségkárosító hatás) kizárása. Ha ezen a szinten a fejlesztett védőoltás nem teljesíti a szigorú feltételeket, a fejlesztés nem folytatódik.
Ha ezen a stádiumon a vakcinafejlesztés átjut, az alapvető kérdés immár a hatékonyság. Ekkor (3. klinikai fázis) önkéntesek randomizált módszerrel (véletlenszerűen) kiválasztott (és titkos kóddal jelölt) egyik csoportját a vakcinával, másik csoportját a placebóval (hatástalan kontrolloldattal) oltják be. Szigorúan dokumentált, rendszeres klinikai átvizsgálások során nemcsak az adott betegség (például COVID-vakcinák esetében a COVID-19 betegség) kialakulását, hanem az illető egészségi paraméreteit is rögzítik. Azt, hogy ki melyik csoportba tartozik, a kód későbbi feltörése előtt sem az érintett, sem a vizsgáló nem tudja (kettős vak kontroll). A fertőzöttek számának megállapítása után egy algoritmus alapján történik meg a hatékonyság értékelése. Azt számolják, hogy 100 vakcinával versus 100 placebóval oltott esetben hányan fertőződtek meg a két csoportban. Példaképpen: ha a vakcinával kezelteknél 100-ból 10, míg a placebocsoportban 100-ból 90 ember fertőződik meg, akkor a vakcina 100-ból 80 embert védett meg a vírusfertőzéstől, ami 80%-os hatékonyságot jelent. Az oltottak követése még hosszú ideig folytatódik (ez az ún. 4. klinikai fázis), és a kapott eredményeket felhasználják a vakcina későbbi alkalmazásánál, illetve újak kifejlesztésénél.
Génterápia és az mRNS-alapú oltás
A génterápia a genetikai betegségben, rákos daganatban szenvedő betegek kezelésének egy lehetősége, amelynek lényege, hogy a sejtek génállományában (genom) hoz létre változást: az elégtelen működésű géneket génbevitellel pótolja, vagy a fokozott működésű géneket kikapcsolja. Az „önazonosságát” védő génállományba nehéz külső génszakaszt bejuttatni, de mivel számos súlyos betegség kezelésére a génterápia jelentené az egyedüli esélyt, a lehetőségek feltárására szigorú kontroll mellett igen intenzív kutatómunka folyik. Ennek ellenére a több ezer genetikai betegség közül csupán mintegy fél tucat betegségben születtek reménykeltő eredmények.
A COVID elleni vakcina kifejlesztéséhez használt mRNS-technológia során a beadott mRNS, miután átadja a vírusfelszíni tüskefehérje tervrajzát az immunrendszer sejtjeinek, gyorsan lebomlik. Az mRNS nem épül be a sejtek genetikai állományába, tehát nem változtatja meg a gének működését, azaz az mRNS-sel folytatott vakcináció NEM génterápia.
Ez is érdekelheti:
Összeállította: Ádám Veronika az MTA rendes tagja, az Orvosi Tudományok Osztálya elnöke
Szerzők: Erdei Anna, az MTA rendes tagja, az MTA főtitkárhelyettese, Falus András, az MTA rendes tagja, Kosztolányi György, az MTA rendes tagja, az MTA élettudományi alelnöke, Jakab Ferenc, az MTA doktora, Kemenesi Gábor PhD, Mócsai Attila, az MTA doktora